Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2323153, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38442029

RESUMO

The emergence of Anaplasma bovis or A. bovis-like infection in humans from China and the United States of America has raised concern about the public health importance of this pathogen. Although A. bovis has been detected in a wide range of ticks and mammals in the world, no genome of the pathogen is available up to now, which has prohibited us from better understanding the genetic basis for its pathogenicity. Here we describe an A. bovis genome from metagenomic sequencing of an infected goat in China. Anaplasma bovis had the smallest genome of the genus Anaplasma, and relatively lower GC content. Phylogenetic analysis of single-copy orthologue sequence showed that A. bovis was closely related to A. platys and A. phagocytophilum, but relatively far from intraerythrocytic Anaplasma species. Anaplasma bovis had 116 unique orthogroups and lacked 51 orthogroups in comparison to other Anaplasma species. The virulence factors of A. bovis were significantly less than those of A. phagocytophilum, suggesting less pathogenicity of A. bovis. When tested by specific PCR assays, A. bovis was detected in 23 of 29 goats, with an infection rate up to 79.3% (95% CI: 64.6% ∼94.1%). The phylogenetic analyses based on partial 16S rRNA, gltA and groEL genes indicated that A. bovis had high genetic diversity. The findings of this study lay a foundation for further understanding of the biological characteristics and genetic diversity of A. bovis, and will facilitate the formulation of prevention and control strategies.


Assuntos
Anaplasma , Genômica , Humanos , Animais , Filogenia , RNA Ribossômico 16S/genética , Anaplasma/genética , China/epidemiologia , Cabras , Variação Genética
2.
Int J Parasitol Parasites Wildl ; 23: 100912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375444

RESUMO

Soft ticks (Ixodida: Argasidae) are ectoparasites of terrestrial vertebrates with worldwide distributions. As one representative group of Argasidae, the genus Argas has an important vectorial role in transmitting zoonotic diseases. However, our knowledge of the subgenus Argas in China is still limited, as most literature only lists occurrence records or describes specific case reports without providing detailed morphological characteristics and further molecular data. This study aims to characterize Argas vulgaris through complete mitochondrial sequencing and morphological diagnostic techniques based on a batch of adult specimens collected from Ningxia Hui Autonomous Regions (NXHAR), North China. The morphology and microstructures of Ar. vulgaris and other lectotypes of argasid ticks in the subgenus Argas were also observed using a stereomicroscope. Following DNA extraction and sequencing, a complete mitochondrial sequence of Ar. vulgaris was assembled and analyzed within a phylogenetic context. The 14,479 bp mitogenome of Ar. vulgaris consists of 37 genes, including 13 genes for protein coding, two for ribosomal RNA, 22 for transfer RNA, and one for control region (D-loops). Phylogenetic analysis of Ar. vulgaris showed 98.27%-100% nucleotide identity with Ar. japonicus, indicating a close relationship between the two tick species. The morphological diagnostic features to differentiate Ar. vulgaris from other ticks within the subgenus Argas included the location of the anus and setae on the anterior lip of the female genital aperture. This study provided high-resolution scanning electron microscope images of female Ar. vulgaris and corresponding molecular data, representing valuable resources for future accurate species identification.

3.
Nat Commun ; 15(1): 1048, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316817

RESUMO

We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.


Assuntos
Infecções por Coronavirus , Coronavirus , Pangolins , Animais , Feminino , Humanos , Camundongos , China , Quirópteros , Citocinas , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Camundongos Transgênicos , Pangolins/virologia
4.
Microbiome ; 12(1): 35, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378577

RESUMO

BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.


Assuntos
Ixodidae , Phlebovirus , Carrapatos , Animais , Humanos , Ixodidae/genética , 60614 , Viroma/genética , Filogenia , Phlebovirus/genética
5.
Emerg Infect Dis ; 29(9): 1780-1788, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610104

RESUMO

Anaplasma capra is an emerging tickborne human pathogen initially recognized in China in 2015; it has been reported in ticks and in a wide range of domestic and wild animals worldwide. We describe whole-genome sequences of 2 A. capra strains from metagenomic sequencing of purified erythrocytes from infected goats in China. The genome of A. capra was the smallest among members of the genus Anaplasma. The genomes of the 2 A. capra strains contained comparable G+C content and numbers of pseudogenes with intraerythrocytic Anaplasma species. The 2 A. capra strains had 54 unique genes. The prevalence of A. capra was high among goats in the 2 endemic areas. Phylogenetic analyses revealed that the A. capra strains detected in this study were basically classified into 2 subclusters with those previously detected in Asia. Our findings clarify details of the genomic characteristics of A. capra and shed light on its genetic diversity.


Assuntos
Genômica , Cabras , Animais , Humanos , Prevalência , Filogenia , Anaplasma/genética , China/epidemiologia
6.
Microbiol Spectr ; 11(4): e0030123, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37260375

RESUMO

Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.


Assuntos
Theileria , Theileriose , Animais , Bovinos , Theileria/genética , Filogenia , Cabras , Genômica
7.
Biomed Environ Sci ; 33(2): 114-122, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32131958

RESUMO

OBJECTIVE: To compare the pathogenicity of isolates of sequence type 7 (ST-7) Neisseria meningitidis( N. meningitidis) belonging to four different serogroups (A, B, C, and X). METHODS: Four ST-7 N. meningitidis isolates serogrouped as A, B, C, and X and characterized by different capsule structures, were examined for their adhesion and invasion properties, and their ability to induce cytokine release and apoptosis in the host cell (the A549 cell line). RESULTS: Among the four ST-7 N. meningitidis isolates, the serogroup A isolate possessed the strongest adhesion and invasion ability. This isolate also induced the release of the highest levels of the pro-inflammatory mediators interleukin-6, interleukin-1ß, and interferon, and the highest apoptosis rate in the host cells. However, there was no significant difference in interleukin-8 and tumor necrosis factor-α secretion between the four isolates. Based on the findings, the serogroup X N. meningitidis isolate had the weakest pathogenicity, whereas there was almost no difference in the pathogenicity of the isolates from serogroups B and C. CONCLUSIONS: The differences in the capsular structure of the four isolates of ST-7 N. meningitidis affected their pathogenic capacities. The findings also imply that the hyperinvasive ST-7 N. meningitidis lineage may include hypoinvasive isolates.


Assuntos
Neisseria meningitidis/patogenicidade , Neisseria meningitidis/genética , Sorogrupo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...